 Dismiss Notice

Dismiss Notice

Dismiss NoticeWelcome to the forums! Take a second to look at our Beginner's Guide. It contains the information necessary for you to have an easier experience here.
Thanks and have fun. NF staff 
Dismiss Notice

Dismiss Notice
Viewing blog entries in category: Star Wars

0:49
A TIE Fighter blows up a huge asteroid. The Millennium Falcon is 34.75m long.
83 pixels = 34.75m
1 pixel = 34.75m/83 = 0.418674699m
0.418674699m X 238 = 99.6445784m
99.6445784m/2 = 49.8222892m
0.418674699m X 170 = 71.1746988m
71.1746988m/2 = 35.5873494m
Volume as an ellipsoid.
V = 4/3πabc
= 4/3 X π X 49.8222892 X 35.5873494 X 35.5873494
= 264303.9m^3
Violent fragmentation of rock is 69000000 joules.m^3.
E = 264303.9 X 69000000
= 1.82369691e13 joules
= 4.3587402246653919 kilotons
Final Results
TIE Fighter destroys asteroid = 4.359 kilotons 
Calc request for @Kaaant , and another high end of a calc that ChaosTheory123 did.
877 pixels = 9.46073e+20m
1 pixel = 9.46073e+20m/877 = 1.07876055e18m
1.07876055e18m X 351 = 3.78644953e20m
It's noted to be very bright and a beacon, so let's assume it has a lux comparable to the full Moon (0.3 lux).
L = 2.5 log I  14.2
= 2.5 log 0.3  14.2
= 12.8928031
Going through that formula step by step...
(146000000000/(3.78644953e20))^2) = 1.48676171e19
12.8928031  26.73 = 1.48676171e19/((L/3.846*10^26)
13.8371969 = 2.5Log(1.48676171e19/((L/3.846*10^26))
13.8371969/2.5 = (1.48676171e19/((L/3.846*10^26))
10^(5.53487876) = (1.48676171e19/((L/3.846*10^26))
2.91824157e6 = (1.48676171e19/((L/3.846*10^26))
2.91824157e6 X (3.864*10e26) = 1.48676171e19
1.12760854e22/1.48676171e19 = 7.58432594e40 joules = 18.126974044 tenatons
Final Results
Infant of Shaa's power = 18.126 tenatons 
Also...
Republic gunship antipersonal turret = 1.195 tons of TNT
Republic gunship pinpoint laser turrets = 71.702 tons of TNT
Republic gunship light airtoair rockets = 143.403 tons of TNT
Republic gunship missiles = 100 kilotons
Republic gunship mass driver barrels = Mach 5 
Redoing Chaos's Star Forge calc with a high end. I'm just going to use his scans again if he doesn't mind.
The diameter of the Sun is 1391000km.
1 pixel = 1391000km/117 = 11888.8889km
11888.8889km X 56 = 665777.778km
665777.778km/2 = 332888.889km
11888.8889km X 130 = 1545555.56km
V = πr^2h/3
= π X 332888.889^2 X 1545555.56/3
= 1.79354319e17km^3
= 1.79354318999999945e+32cm^3
The density of the Corona (outermost layer of the Sun) is 1x10^15g/cm^3.
M = 1.79354318999999945e+32 X 1 x 10^15
= 1.79354319e17g
= 179354319000000kg
Next for the speed. Well use planet curvature scaling (looking at Endless Mike calc request of Father for help).
Spoiler:
R = (h/2) + c^2/(8h)
= (48/2) + 1248^2/(8 X 48)
= 4080
4080 pixels = 695500km
1 pixel = 695500km/4080 = 170.465686km
170.465686km X 47 = 8011.88724km
T = 8011.88724km/1s
= 8011887.24/340.29
= Mach 23544.2923
Let's get our energy.
E = (0.5) X 179354319000000 X 8011887.24^2
= 5.7564071e27 joules
= 1.37581431644 exatons
Final Results
Malak charges the Star Forges production power = 1.376 exatons
Star Forge drains Abo = Mach 23544.292 
http://soi.stanford.edu/press/agu0598/pressrel.html
https://en.wikipedia.org/wiki/Solar_flare
A = 4πr^2
= 4 X π X 695500000^2
= 6.07860794e18m^2
It says the nearby stars, so it's not limited to the nearest. The top 26 stars closest to the Earth are within 11.7 lightyears of Earth (1.1069e+14km, or 110690000000000000m).
A = 4πr^2
= 4 X π X 110690000000000000^2
= 1.53966642e35m^2
Now for the inverse square law, plus the amount of stars it affected (let's go with 26 for now as a low end).
I = 1.0e20/6.07860794e18
= 16.451135 X 1.53966642e35
= 2.53292601e36 X 26
= 6.58560763e37 joules
= 15.7399799952 ninatons
Next is the high end.
I = 1.0e25/6.07860794e18
= 1645113.5 X 1.53966642e35
= 2.53292601e41 X 26
= 6.58560763e42 joules
= 1.57399799952 tenakilotons
The stars flare, so we can also get luminousity (which are also assumably pretty bright too given the description). Looking at Agent9149s Sailor Moon, Endless Mikes revisions, Bernkastels Madoka calcs and Tacocats Percy Jackson constellation calc for help. The apparent magnitude of Sirius (the brightest star seen from Earth sans the Sun) is 1.46. The apparent magnitude of the Sun is 26.74. The closest star to the Sun is Barnards Star, which is 5.9630 lightyears away (5.64143e+16m), or 1.8282641 parsecs. The distance from the Sun to the Earth is 0.000004731537734207877 parsecs.
A = 4πr^2
= 4 X π X 5.64143e+16^2
= 3.99933949e34m^2
= 3.99933948999999979e+38cm^2
1.46 lux equals 2.1316e7 watts per cm^3 (0.00000021316).
E = 3.99933948999999979e+38 X 0.00000021316
= 8.52499206e31 joules
On top of that, let's find the amount of time they shined for (keep in mind a distant constellation was affected).
(Low end)
E = 60 X 10
= 600 X 8.52499206e31
= 5.11499524e34 X 26
= 1.32989876e36 + 6.58560763e37
= 6.71859751e37 joules
= 16.0578334369 ninatons
(High end)
E = 60 X 10
= 600 X 8.52499206e31
= 5.11499524e34 X 26
= 1.32989876e36 + 6.58560763e42
= 6.58560896e42 joules
= 408.852019598 tenatons
Final Results
Darth Plagueis dies (low end) = 16.059 ninatons
Darth Plagueis dies (high end) = 1.574 tenakilotons 
http://scifi.stackexchange.com/questions/40252/howmanyjediwerethereatthetimeofthepurge
E = 2.24e32/10000
= 2.24e28 joules
= 5.35372848948 exatons
Final Results
Minimum energy needed by individual Jedis to stop Kinro = 5.354 exatons
And there's other factors to take into account; the weaker Jedi were killed or lost their minds so it's actually a smaller number of Jedi who stood together to do this. That though should be the minimum amount of energy needed by everyone to stop it. Also, this is Disney Canon, so would scale to high tiers. 
2:20  2:50
The first ships escape and the ION Cannon destroys a Star Destroyer. Let's get the timeframe first.
Spoiler:
16 seconds. Hoth is 7,200km in diameter, or 3600km in radius.
= 1.15462217 rad
= 66.15497727340076 degrees
The angscaler gives us 5527.1km, but we'll need to subtract the radius of Hoth for our final distance (1927.1km).
T = 1927.1km/16s
= 120443.75/340.29
= Mach 353.94443
Pretty impressive. Even though energy/particle beams in Star Wars are explicitly light speed, having calcs is always good to counter subsonic claims.
Spoiler:
1.71 seconds.
T = 1927.1km/1.71s
= 1126959.06/340.29
= Mach 3311.76073
Final Results
Rebel Ships escape Hoth = Mach 353.944
ION Cannon blasts Star Destroyer = Mach 3311.761 
1:50
The Naboo Royal Starship flies towards Coruscant and enters its atmosphere (on the daylight side of the planet, which is further away). This should be simple enough. Coruscant is 12,240km in diameter.
= 0.359910176 rad
= 20.6213340886618077 degrees
Put that through the angscaler and we have us 33641km.
= 1.99559448 rad
= 114.3391413238878 degrees
Coruscant is is 3948.7km away from the starship, which means it travelled 29692.3km. Next for the timeframe.
Spoiler:
3.8 seconds.
T = 29692.3km/3.8s
= 7813763.16/340.29
= Mach 22962.0711
Final Results
Naboo Starship flies to Coruscant = Mach 22,962.0711 
1:051:25
Spoiler:
The Rebel Fleet approaches the Second Death Star. Note in both gifs you can visibly see Endor and the Death Star getting closer. The Second Death Star is over 160km in diameter, and Endor is 4900km in diameter.
= 0.0123709838 rad
= 0.7088051601664716594 degrees
Entering that through the angscaler gets a distance of 12933km.
= 0.0160821374 rad
= 0.921438598571780898 degrees
The Second Death Star is now 9948.7km away, and the fleet has moved 2984.3km. Now for a timeframe.
Spoiler:
4 seconds.
T = 2984.3km/4s
= 746075/340.29
= Mach 2192.46819
Niiice! Now let's go to the next shot.
= 0.103959698 rad
= 5.95645193486940094 degrees
The Second Death Star is 1537.7km away, and the fleet has traveled 8411km. Again we get a timeframe.
12 seconds.
T = 8411km/12s
= 700916.667/340.29
= Mach 2059.76275
This is surprisingly consistent. For the last one, the full view of the Death Star is obscured, so we'll get the dish and scale from that.
967 pixels = 160km
1 pixel = 160km/967 = 0.165460186km
0.165460186km X 297 = 49.1416752km
Next to scaling the distance (in the above video at 1:43).
= 0.193368901 rad
= 11.0792219164105283 degrees
That's 824.85km away, and now the Rebel Fleet has come a further 7586.15km. Once again we get the timeframe.
20 seconds.
T = 7586.15km/20s
= 379307.5/340.29
= Mach 1114.65956
Not as great as the first two times, but still pretty consistant with them, and much greater than others would say Star Wars ships are capable of.
Final Results
The Rebel Fleet approaches the Second Death Star (low end) = Mach 1114.66
The Rebel Fleet approaches the Second Death Star (mid end) = Mach 2059.763
The Rebel Fleet approaches the Second Death Star (high end) = Mach 2192.468 
It's about time I did this.
At 1:53, the ship leaves hyperspace, so this is all outside hyperspace. 2:34 to 2:46, the spaceship leaves the stars orbit and crashes towards the planet.
Spoiler:
The planet has grass, so it would be in the habitable zone. The closest distance for a habitable zone is 0.725 AU (
108458000km).
https://en.wikipedia.org/wiki/Circumstellar_habitable_zone
Spoiler:
3.46 seconds.
T = 108458000km/3.46s
= 3.13462428e10/299792458
= 104.559811 C
Final Results
Akosha flies starship around a star = 104.56 C
I'm pretty sure spaceships in SW enter hyperspace at FTL speeds, so I'll need to check up with Chaos and Fang. We still have our results though. 
4:30
An Xwing jumps through hyperspace towards the galaxy. According to Wookiepedia, Star Wars Battlefront is canon, so I guess it's fine? The Star Wars Galaxy is over 100,000 lightyears in diameter.
= 0.884961621 rad
= 50.704565914481698 degrees
With the angscaler, we can determine that the galaxy is 105530 lightyears away. How long did it take to fly there?
Spoiler:
8.22 seconds.
T = 105530 lightyears/8.22 seconds
= 1.21456151e20/299792458
= 405134111000C
Final Results
Xwings fly into the galaxy = 405134111000 C 
An iconic scene, in which the Rebels blow up the Death Star and save the day.
1. First Death Star Run
13:22  12:35
At 13:22, the torpedoes go down the chute, at 13:26 the Death Star starts messing up and finally at 13:33 it explodes.
T = 80km/4s
= 20000/340.29
= Mach 58.7733992
Not bad. Now let's see how the second Death Star run goes.
2. Second Death Star run
The escape goes from 7:33 to 8:09.
Spoiler:
36 seconds. The Second Death Star is between 160km wide (80km in radius) to 900km wide (450km in radius).
T = 80km/36s
= 2222.22222/340.29
= Mach 6.53037768
T = 450km/36s
= 12500/340.29
= Mach 36.7333745
Not as high as other feats that I've seen, but keep in mind Lando had to navigate winding paths when he did this, so this is pretty damn impressive.
3. Getting the Hell outta there
Something else impressive I noticed; let's go back to the First Death Star exploding.
Luke is in the trench, he fires the torpedos, the Death Star starts its chain reaction, Luke and his friends fly away, Tarkin has some second thoughts and it explodes. Here's a hint; Luke is in the trench, then flying away from the Death Star 8 seconds later. Ok that's not really a hint but I'm sure you've got it now.
= 0.182821311 rad
= 10.4748895253746355 degrees
Fire this info into the angscaler! 872.73km Jackson!
T = 872.73km/8s
= 109091.25/340.29
= Mach 320.583179
Final Results
Xwing torpedos blow up Death Star = Mach 58.773
The Millennium Falcon escapes the Second Death Star exploding (low end) = >Mach 6.530
The Millennium Falcon escapes the Second Death Star exploding (high end) = >Mach 36.733
Luke flies away from the Death Star = Mach 320.583 
Spoiler:
Jedi Padawan RiviAnu temporarily halts the fall of a VenatorClass Star Destroyer. We have all the dimensions for a VenatorClass Star Destroyer below).
Volume as a triangular prism (it's not exactly that shape, but as we have the upper control room and the missing bits, it's close enough), then multiply by the hollowness value .of 0.15
V = 1/2blh
= 1/2 X 548 X 1137 X 268
= 83492184 X 0.15
= 12523827.6m^3
From what I know, Star Destroyers are made of durasteel (steel weighs 7850kg/m^3).
M = 12523827.6 X 7850
= 98312046660kg
Let's star by getting the GPE.
Centre of gravity = 1137m/3 = 379m X 2 = 758m
Earths Gravity Pull = 9.807m/s²
Mass = 98312046660kg
E = 758 X 9.807 X 98312046660
= 7.30822851e14 joules
= 174.670853489 kilotons
Now let's get the velocity. This is the formula that we'll be using.
Vi is the velocity, g is the acceleration due to gravity and d is the distance.
= 0.503770658 rad
= 28.8639325460000009 degrees
Put that through the angscaler and we get 2209m. Gravitational pull of the Earth is 9.807m/s.
Vi = sqrt(2gd)
= sqrt(2 X 9.807 X 2209)
= 208.15217m/s
Entering the mass and speed into the kinetic energy calculator we get 2.130E+15 joules, or 509.082217973 kilotons. Now we add the upper GBE to this to get our final results.
E = 177.4360913 kilotons + 509.082217973 kilotons
= 686.518309 kilotons
Final Results
RiviAnu halts Star Destroyer = 686.518 kilotons 
My second Star Wars calc, this time for the movies.
2:38
This may not look like much, but keep in mind these things are huge.
Spoiler:
3.96 seconds. A quick search reveals that Star Destroyers are 1015m wide.
= 0.0627561094 rad
= 3.595660207290192201 degrees
That a distance of 16168m.
= 0.126084273 rad
= 7.22409670589319841 degrees
Which gets us 8039.5m.
T = 16168  8039.5
= 8128.5m/3.96s
= 2052.65152m/s
= Mach 5.984406763848395983
I guess these are those local slugs. There are better speed feats in the movies, but we're not done yet! An Imperial Star Destroyer weighs 892,000 megatons (892,000,000,000,000kg).
Entering that into the kinetic energy calculator, we get 1.8791667051010064e+21 joules, or 449.131621678 gigatons. A Star Destroyers deadweight is 359,000 megatons (359,000,000,000,000kg), which gives us a total mass of 1.25100e15kg, and an engine output of 629.89199408 gigatons.
Final Results
Imperial Star Destroyers chase the Millenium Falcon = Mach 5.984
Star Destroyer engine output = 449.132 gigatons
Star Destroyer engine output = 629.892 gigatons
I'm pretty sure there are much higher calcs for Star Destroyers around here, but there you go. 
The World Razor is one of the most powerful beings in Star Wars (though still below the Ones & the Bedlam Spirits). It destroyed 100 stars and 1000 planets, took the full might of the Infinite Empire to enprison and is said to be a threat to the entire galaxy. The technology needed to enprison it within Belsavis is immensly powerful, as shown below...
14:00
It refers to the nearby systems, so lets go with the second closest to the Sun, Barnards Star, 5.9630 lightyears away, or 56414300000000km (5.64143e+16m). Now we need the GBE of Barnards Star, and the radius of Barnards Star is 136,400km. In order to find the GBE, we'll need to know the size (272,800km in diameter, or 136,400km in radius, or 136400000m) and mass (2.86400e29kg) of Barnards Star.
U = 3GM^2/5R
= (3 X 6.67408e11 X 2.86400e29^2)/(5 X 136400000)
= 2.40809888e40 joules
Next for the surface area of Barnards Star.
V = 4πr^2
= 4 X π X 136400000^3
= 3.18898866e25m^3
Now for the crosssectional surface area of Barnards Star.
A = πr^2
= π X 136400000^2
= 5.84492057e16m^2
Then the surface area of the explosion.
A = 4πr^2
= 4 X π X 5.64143e+16^2
= 3.99933949e34m^2
Next we divide the total surface area of the explosion by the crosssectional surface area of Barnards Star, then time sit by the GBE of Barnards Star before finally dividing by FOE (inverse squarelaw basically).
I = 3.99933949e34/5.84492057e16
= 6.84241889e17 X 2.40809888e40
= 1.64772213e58/10^44
= 164.772213000000 TERAFOE
Final Results
Belsavis's Power Core = 164.772 TERAFOE
Page 1 of 2